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Abstract

We investigate e!ects of the bunch density gradient in self-ampli"ed spontaneous emission, including the role of
coherent spontaneous emission (CSE) in the evolution of the free-electron laser process. In the exponential gain regime,
we solve the coupled Maxwell}Vlasov equations and extend the linear theory to a bunched beam with energy spread.
A time-dependent, nonlinear simulation algorithm is used to study the CSE e!ect and the nonlinear evolution of the
radiation pulse. Published by Elsevier Science B.V.
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1. Introduction

The one-dimensional (1D) theory of self-ampli-
"ed spontaneous emission (SASE) is based on the
solution of the linearized Maxwell}Vlasov equa-
tions, for the cases of a coasting beam with energy
spread [1] and a bunched monochromatic beam
[2]. However, most SASE demonstration experi-
ments operate at relatively long wavelengths but
employ short, intense electron bunches. E!ects of
bunched beams have been considered in Refs. [3}8]
for simple bunch pro"les. Spiking behavior near
the bunch tail was observed in the nonlinear simu-
lation [3,6]. In this paper, we extend the linear

theory to bunched beams with arbitrary phase-
space distributions and evaluate the e!ects of the
bunch density gradient in the exponential gain re-
gime. A time-dependent, nonlinear simulation is
developed to take into account the coherent spon-
taneous emission (CSE) and to study the nonlinear
evolution of the radiation pulse.

2. Linear analysis

For FEL interaction, the backward wave is
dropped from the Maxwell equation [8], and the
slowly varying envelope approximation (SVEA) is
invoked for the transverse electric "eld amplitude:
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It is convenient to de"ne the bunch coordinate as
h"k

&
(z!ct)#k

8
z and change the independent

variables from (z, t) to (z, h). The phase-space distri-
bution of the electron bunch is given by the
Klimontovich distribution [1]
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where n
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is the maximum line density and g"
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0
is the conjugate variable to h. Hence, the

Maxwell equation becomes
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meability of free space, R is the beam transverse
cross section, a

8
is equal to the wiggler parameter

K for a helical wiggler, and a
8
"K[JJ]/J2 for

a planar wiggler. The Vlasov equation for the elec-
tron distribution is [1,2]
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mc2) is another constant.

In the exponential gain regime and without an
external "eld, we can regard the "eld amplitude
A in Eq. (4) as a small, "rst-order quantity. This
includes the coherent and the incoherent spontan-
eous emissions as well as the stimulated emission.
Hence, we approximate the distribution function
F as F

0
#F

1
. The zeroth-order term F

0
is the

initial smooth distribution
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where s(h) is the bunch pro"le (04s41) and
<(g) is the initial energy distribution of the
beam (:dg<(g)"1). The "rst-order term F

1
con-

tains both the initial #uctuation *F
0

and the
bunching behavior through FEL interaction. Ap-
proximating F with F
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in the third term of Eq. (4)

yields
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gain becomes negligible when the width of <(g)
is much larger than the Pierce parameter o [1]
(de"ned through i

1
n
0
i
2
"4k2

8
o3), we have

2k
8
gz&2k

8
oz(2p in the exponential gain

regime. We can therefore make the approximation
h
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+h in the slowly varying amplitude A but keep

the fast oscillatory phase e*h0 . Inserting Eqs. (5) and
(6) into Eq. (3) and applying the Laplace trans-
formation, we obtain
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where the Green function is
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The j-integration is along a straight path parallel
to the real axis and below all singularities of the
integrand. The Green function is nonzero only
when 04(h!h

j
)4k

8
z (the slippage length).

Hence the total electric "eld at h is the sum of "elds
that originated from the discrete radiators prior to
h but within the slippage length. For a monochro-
matic beam with <(g)"d(g), Eqs. (7) and (8) repro-
duce the result of Refs. [2,7]. The Green function can
be evaluated asymptotically for a #at-top bunch
pro"le [4], with a (h!h

j
) dependence that re-

sembles Fig. 1, and with a maximum value given by
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where ¸
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is the power gain length, and G

0
is a con-

stant.
The intensity of the SASE radiation is
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where j
3
"2p/k

&
is the resonant wavelength. The

"rst term in the square bracket is the usual incoher-
ent SASE due to the shot noise, and the second
term is the coherent SASE, growing from the initial
coherent spontaneous emission. Coherent bunch-
ing only at the resonant wavelength was considered
in Ref. [5], and coherent SASE for a monochro-
matic, bunched beam was calculated in Ref. [7].
Here the result is generalized to bunched beams
with arbitrary phase-space distributions.

Integration by parts on the second term of
Eq. (10) leads to
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The second term is negligible because the Green
function is exponentially small at the boundary
compared with its maximum value. Eq. (11) clearly
shows that the coherent SASE comes from the
bunch density gradient. Consider a #at-top bunch
that has a bunch length h

"
longer than the slippage

length k
8
z. In the slippage region when
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radiates coherently with an e!ective point charge
en

0
j
3
/(2p) and an intensity pro"le

I
#0)

"

i2
1
n2
0

2ck
0
k2
8

DG(h, z)D2. (12)

In the body of the bunch when k
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z(h(h

"
, the

coherent SASE goes to zero, and the incoherent
SASE intensity can be estimated as
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Thus, the ratio of the maximum coherent SASE
intensity to the incoherent one is
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which can be a very large number for long-
wavelength SASE experiments. Nevertheless, the
spike of the coherent SASE will be less intense for a
more realistic bunch pro"le.

Following Ref. [7], one can write Eq. (7) as
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where e is an in"nitesimal and positive number,
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For the coasting beam, w(h, h@)"1 and D(j, l)"0
is the dispersion relation including the energy
spread [1]. Eq. (16) provides a generalization to the
bunched beam. When the bunch distribution does
not change appreciably over the slippage length,
w(h, h

j
)+s(h) from Eq. (17), and the FEL gain

is a!ected only by the local electron density as
expected.

3. Nonlinear simulation

For numerical simulation of bunch density
gradient e!ects, it is convenient to use the indi-
vidual particle formulation of FEL equations [6]
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where z6 "2k
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oz, g6 "g/o, and a"2ok
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) is

the scaled electric "eld. The partial derivative with
respect to h in Eq. (20) describes the slippage be-
tween the electron bunch and the radiation
"eld. The sum over the d functions can be approxi-
mated by a local average over a small bin *h
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Fig. 1. Coherent SASE intensity Da
#0)

D2 versus 2oh for a #at-top
bunch (a) without initial energy spread, (b) with a #at-top energy
spread of width o, at z6 "5.

Fig. 2. Coherent and incoherent SASE intensity DaD2 versus 2oh
for a #at-top bunch (0(2oh(100) without initial energy
spread at z6 "15.

around h, i.e.,
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where Nh"s(h)n
0
*h/k

&
is the number of electrons

within a *h bin at position h.
A time-dependent simulation algorithm [3] can

be constructed to take into account the slippage
e!ect: one "rst divides the bunch into many buckets
(separated by j

3
) and loads each bucket with simu-

lation particles that are uniformly distributed in
*h"2p and have the proper energy spread. Apply
Eqs. (18)}(20) without the slippage term in each
bucket, and then slip the computed "eld one bucket
forward after each wiggler period. To start up the
FEL process, one either gives a small, constant
bunching [3] or uses the shot noise simulation
algorithm of Ref. [9]. However, such a discretiz-
ation is not adequate for CSE simulation because
the bunch pro"le s(h) is only sampled with a samp-
ling interval j

3
. Thus, the Fourier transform of s(h)

is de"ned only between the Nyquist critical fre-
quency f

#
"c/(2j

3
) or u

#
"ck

&
/2, and the coherent

bunching around the resonant frequency ck
&
is left

out.
We modify the above algorithm to include the

CSE e!ect by decreasing the sampling interval to
cover the resonant part of the bunch spectrum. For
example, after loading every bucket with the pre-
scribed simulation particles, we can further divide
each bucket into eight sections with *h"p/4 so
that the critical sampling frequency is 4ck

&
. The

spectral power of the bunch pro"le outside this
frequency range should be su$ciently small to
eliminate the e!ect of aliasing. In each section,
Eq. (21) is used to determine the average bunching,
and the electric "eld is computed and propagated
section by section just as in the time-dependent
algorithm. The "nal electric "eld at the exit of the
wiggler is averaged over the resonant wavelength
(or eight sections), in consistent with the slowly
varying envelope approximation.

Compared with the multifrequency approach to
CSE simulation [6], this time-dependent approach
is more straightforward and can include the shot
noise in a natural way. For example, let us take

N"1010, o"1/(40p), and a #at-top bunch with
the bunch length equal to 1000j

3
. Fig. 1 shows the

coherent SASE at the slippage region of the bunch
(i.e., 0(2oh(z6 ), in agreement with Eq. (12) of the
linear theory. Fig. 2 shows the total intensity pro"le
in the nonlinear regime after saturation. In addition
to the spikes seeded by the noise nonuniformity in
the entire radiation pulse [4], a more intense spike
seeded by CSE exists at the slippage region, in
agreement with the simulation of Ref. [6]. We em-
phasise that the CSE spike exists both in the linear
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and the nonlinear regimes (as in Figs. 1 and 2) and
is di!erent from the superradiant spike observed in
the nonlinear regime [3], which originates from the
discontinuity of the initial condition used in the
simulation.

4. Conclusions

A linear theory and a nonlinear simulation algo-
rithm are developed to treat SASE for bunched
beams with arbitrary phase-space distributions. In
general, sharp density variation over a radiation
wavelength in the electron bunch gives rise to the
coherent spontaneous emission, which in turn

drives the coherent ampli"ed emission within the
slippage distance.
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